Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37173911

RESUMO

A common severe neurotoxic side effect of breast cancer (BC) therapy is chemotherapy-induced peripheral neuropathy (CIPN) and intervention is highly needed for the detection, prevention, and treatment of CIPN at an early stage. As the eye is susceptible to neurotoxic stimuli, the present study aims to determine whether CIPN signs in paclitaxel-treated BC patients correlate with ocular changes by applying advanced non-invasive biophotonic in vivo imaging. Patients (n = 14, 10 controls) underwent monitoring sessions after diagnosis, during, and after therapy (T0-T3). Monitoring sessions included general anamnesis, assessment of their quality of life, neurological scores, ophthalmological status, macular optical coherence tomography (OCT), and imaging of their subbasal nerve plexus (SNP) by large-area confocal laser-scanning microscopy (CLSM). At T0, no significant differences were detected between patients and controls. During treatment, patients' scores significantly changed while the greatest differences were found between T0 and T3. None of the patients developed severe CIPN but retinal thickenings could be detected. CLSM revealed large SNP mosaics with identical areas while corneal nerves remained stable. The study represents the first longitudinal study combining oncological examinations with advanced biophotonic imaging techniques, demonstrating a powerful tool for the objective assessment of the severity of neurotoxic events with ocular structures acting as potential biomarkers.

2.
Quant Imaging Med Surg ; 12(10): 4734-4746, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36185050

RESUMO

Background: The purpose of the present proof-of-concept study was to use large-area in vivo confocal laser scanning microscopy (CLSM) mosaics to determine the migration rates of nerve branching points in the human corneal subbasal nerve plexus (SNP). Methods: Three healthy individuals were examined roughly weekly over a total period of six weeks by large-area in vivo confocal microscopy of the central cornea. An in-house developed prototype system for guided eye movement with an acquisition time of 40 s was used to image and generate large-area mosaics of the SNP. Kobayashi-structures and nerve entry points (EPs) were used as fixed structures to enable precise mosaic registration over time. The migration rate of 10 prominent nerve fiber branching points per participant was tracked and quantified over the longitudinal period. Results: Total investigation times of 10 minutes maximum per participant were used to generate mosaic images with an average size of 3.61 mm2 (range: 3.18-4.42 mm2). Overall mean branching point migration rates of (46.4±14.3), (48.8±15.5), and (50.9±13.9) µm/week were found for the three participants with no statistically significant difference. Longitudinal analyses of nerve branching point migration over time revealed significant time-dependent changes in migration rate only in participant 3 between the last two measurements [(63.7±12.3) and (43.0±12.5) µm/week, P<0.01]. Considering individual branching point dynamics, significant differences in nerve migration rate from the mean were only found in a few exceptions. Conclusions: The results of this proof-of-concept study have demonstrated the feasibility of using in vivo confocal microscopy to study the migration rates of corneal subbasal nerves within large areas of the central human cornea (>1 mm2). The ability to monitor dynamic changes in the SNP opens a window to future studies of corneal nerve health and regenerative capacity in a number of systemic and ocular diseases. Since corneal nerves are considered part of the peripheral nervous system, this technique could also offer an objective diagnostic tool and biomarker for disease- or treatment-induced neuropathic changes.

3.
Diagnostics (Basel) ; 12(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35626335

RESUMO

Paclitaxel and trastuzumab have been associated with adverse effects including chemotherapy-induced peripheral neuropathy (CIPN) or ocular complications. In vivo confocal laser scanning microscopy (CLSM) of the cornea could be suitable for assessing side effects since the cornea is susceptible to, i.e., neurotoxic stimuli. The study represents a one-year follow-up of a breast cancer patient including large-area in vivo CLSM of the subbasal nerve plexus (SNP), nerve function testing, and questionnaires during paclitaxel and trastuzumab therapy. Six monitoring sessions (one baseline, four during, and one after therapy) over 58 weeks were carried out. Large-area mosaics of the SNP were generated, and identical regions within all sessions were assigned. While corneal nerve morphology did not cause alterations, the number of dendritic cells (DCs) showed dynamic changes with a local burst at 11 weeks after baseline. Simultaneously, paclitaxel treatment was terminated due to side effects, which, together with DCs, returned to normal levels as the therapy progressed. Longitudinal in vivo CLSM of the SNP could complement routine examinations and be helpful to generate a comprehensive clinical picture. The applied techniques, with corneal structures acting as biomarkers could represent a diagnostic tool for the objective assessment of the severity of adverse events and the outcome.

4.
Sci Rep ; 12(1): 2481, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169133

RESUMO

The morphometric assessment of the corneal subbasal nerve plexus (SNP) by confocal microscopy holds great potential as a sensitive biomarker for various ocular and systemic conditions and diseases. Automated wide-field montages (or large-area mosaic images) of the SNP provide an opportunity to overcome the limited field of view of the available imaging systems without the need for manual, subjective image selection for morphometric characterization. However, current wide-field montaging solutions usually calculate the mosaic image after the examination session, without a reliable means for the clinician to predict or estimate the resulting mosaic image quality during the examination. This contribution describes a novel approach for a real-time creation and visualization of a mosaic image of the SNP that facilitates an informed evaluation of the quality of the acquired image data immediately at the time of recording. In cases of insufficient data quality, the examination can be aborted and repeated immediately, while the patient is still at the microscope. Online mosaicking also offers the chance to identify an overlap of the imaged tissue region with previous SNP mosaic images, which can be particularly advantageous for follow-up examinations.


Assuntos
Córnea/inervação , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Nervo Óptico/diagnóstico por imagem , Humanos , Nervo Óptico/ultraestrutura
5.
Diagnostics (Basel) ; 11(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066952

RESUMO

During breast cancer therapy, paclitaxel and trastuzumab are both associated with adverse effects such as chemotherapy-induced peripheral neuropathy and other systemic side effects including ocular complications. Corneal nerves are considered part of the peripheral nervous system and can be imaged non-invasively by confocal laser scanning microscopy (CLSM) on the cellular level. Thus, in vivo CLSM imaging of structures of the corneal subbasal nerve plexus (SNP) such as sensory nerves or dendritic cells (DCs) can be a powerful tool for the assessment of corneal complications during cancer treatment. During the present study, the SNP of a breast cancer patient was analyzed over time by using large-scale in vivo CLSM in the course of paclitaxel and trastuzumab therapy. The same corneal regions could be re-identified over time. While the subbasal nerve morphology did not alter significantly, a change in dendritic cell density and an additional local burst within the first 11 weeks of therapy was detected, indicating treatment-mediated corneal inflammatory processes. Ocular structures such as nerves and dendritic cells could represent useful biomarkers for the assessment of ocular adverse effects during cancer therapy and their management, leading to a better visual prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...